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78 THEORY AND APPLICATIONS OF SPECIAL FUNCTIONS 

Abstract The existence of the crank was first conjectured by F. J. Dyson in 
1944 and was later established by G. E. Andrews and F. G. Garvan in 
1987. However, much earlier, in his lost notebook, Ramanujan studied 
the generating function Fa(q) for the crank and offered several elegant 
claims about it, although it seems unlikely that he was familiar with all 
the combinatorial implications of the crank. In particular, Ramanujan 
found several congruences for Fa(q) in the ring of formal power series 
in the two variables a and q. An obscure identity found on page 59 of 
the lost notebook leads to uniform proofs of these congruences. He also 
studied divisibility properties for the coefficients of F,(q) as a power 
series in q. In particular, he provided ten lists of coefficients which he 
evidently thought exhausted these divisibility properties. None of the 
conjectures implied by Ramanujan's tables have been proved. 

1. Introduction 
In attempting to find a combinatorial interpretation for Ramanujan's 

famous congruences for the partition function p(n), the number of ways 
of representing the positive integer n as a sum of positive integers, in 
1944, F. J. Dyson [7] defined the rank of a partition to be the largest part 
minus the number of parts. Let N(m, n) denote the number of partitions 
of n with rank m, and let N(m, t, n) denote the number of partitions of 
n with rank congruent to m modulo t. Then Dyson conjectured that 

and 

N (k, 7,7n + 5) = p(7n + 5, 0 5 k 5 6, 7 '  
which yield combinatorial interpretations of Ramanujan's famous con- 
gruences p(5n + 4) r 0 (mod 5) and p(7n+ 5) - 0 (mod 7), respectively. 
These conjectures, as well as further conjectures of Dyson, were first 
proved by A. 0. L. Atkin and H. P. F. Swinnerton-Dyer [4] in 1954. The 
generating function for N(m, n) is given by 

where 1q1 < 1 and Iql < la1 < 1/1q1. Although, to the best of our 
knowledge, Ramanujan was unaware of the concept of the rank of a 
partition, he recorded theorems on its generating function in his lost 
notebook; in particular, see [20, p. 201. 

The corresponding analogue does not hold for p(l ln+6) r 0 (mod l l ) ,  
and so Dyson conjectured the existence of a crank. In his doctoral dis- 
sertation [ll], F. G. Garvan defined vector partitions which became the 
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forerunners of the crank. The true crank was discovered by G. E. An- 
drews and Garvan on June 6, 1987, at  a student dormitory at the Uni- 
versity of Illinois. 

Definition 1.1. For a partition n-, let X(n) denote the largest part of n-, 
let p(n) denote the number of ones i n  n, and let u(n-) denote the number 
of parts of n- larger than p(n-). The crank c(n-) is then defined to be 

For n # 1, let M(m,n)  denote the number of partitions of n with 
crank m, while for n = 1, we set 

M(0 , l )  = -1, M(-1,l)  = M(1 , l )  = 1, and M(m, 1) = 0 otherwise. 

Let M(m, t ,  n) denote the number of partitions of n with crank congruent 
to m modulo t. The main theorem of Andrews and Garvan [2] relates 
M(m, n) with vector partitions. In particular, the generating function 
for M(m, n) is given by 

The crank not only leads to a combinatorial interpretation of p(1ln + 
6) = 0 (mod l l ) ,  as predicted by Dyson, but also to similar interpreta- 
tions for p(5n + 4) = 0 (mod 5) and p(7n + 5) r 0 (mod 7). 

Theorem 1.2. With M (m, t ,  n) defined above, 

M(k, 11, l l n  + 6) = + 6, 0 < k < 10. 
11 ' 

An excellent introduction to cranks can be found in Garvan's survey 
paper [12]. Also, see [3] for an interesting article on relations between 
the ranks and cranks of partitions. 

2. Entries on Pages 179 and 180 
At the top of page 179 in his lost notebook 

a function F(q) and coefficients An, n 2 0, by 
[20], Ramanujan defines 
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Thus, Fa(q) is the generating function for cranks, and by (1.5)) for n > 1, 

He then offers two congruences for Fa(q). These congruences, like others 
in the sequel, are to be regarded as congruences in the ring of formal 
power series in the two variables a and q. First, however, we need to 
define Ramanujan's theta function f (a, b) by 

which satisfies the Jacobi triple product identity [5, p. 35, Entry 191 

The two congruences are then given by the following two theorems. 

Theorem 2.1. 

Theorem 2.2. 

Note that X2 = a2 + a-2, which trivially implies that a4 - -1 
(mod X2) and a8 r 1 (mod X2). Thus, in (2.4), a behaves like a primitive 
8th root of unity modulo X2. On the other hand, X3 = a3 + 1 + a-3, 
from which it follows that a9 = -a6 - a3 r 1 (mod X3). SO in (2.5), a 
behaves like a primitive 9th root of unity modulo X3. 

This now leads us to the following definition. 

Definition 2.3. Let P(q) denote any power series in q. Then the t-  
dissection of P is given by 
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Thus, if we let a = exp(2ri/8) and replace q by q2, (2.4) implies the 
2-dissection of Fa(q), while if we let a = exp(2ri/9) and replace q by 
q3, (2.5) implies the 3-dissection of Fa(q). The first proofs of (2.4) and 
(2.5) in the forms where a is replaced by the respective primitive root 
of unity were given by Garvan [14]; his proof of (2.5) uses a Macdonald 
identity for the root system A2. 

3. Entries on Pages 18 and 20 

Ramanujan gives the 5-dissection of F,(q) on pages 18 and 20 of his 
lost notebook [20], with the better formulation on page 20. It is inter- 
esting that Ramanujan does not give the two variable form, analogous 
to those in (2.4) and (2.5), from which the 5-dissection would follow by 
setting a to be a primitive fifth root of unity. Proofs of the 5-dissection 
have been given by Garvan [13] and A. B. Ekin [9]. To describe this 
dissection, we first set 

Theorem 3.1. If C is a primitive fifth root of unity and f (-q) is defined 
by (3.1), then 

For completeness, we state Theorem 3.1 in the two variable form as a 
congruence. But first, for brevity, it will be convenient to  define 

and 
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Theorem 3.2. With f (-q), A,, and Sn defined by (3.1)-(3.3), respec- 
tively, 

+ (A, + 1)q3 f (-q51 -q2') 2 
f 2(-q10, -q15) 

f (-q25) (mod S2). 

As we have seen, by letting a be a root of unity, we can derive a 
dissection from a congruence in the ring of formal power series in two 
variables. In fact, the converse is true, and this is proved in [6]. 

4. Entries on Pages 70 and 71 
The first explicit statement and proof of the 7-dissection of Fa(q) was 

given by Garvan [13, Thm. 5.11; another proof was later found by Ekin 
[9]. Although Ramanujan did not state the 7-dissection of Fa(q), he 
clearly knew it, because the six quotients of theta functions that appear 
in the 7-dissection are found on the bottom of page 71 (written upside 
down) in his lost notebook. We record the two variable form here. 

Theorem 4.1. With f (a, b) defined by (2.2), f (-q) defined by (3.1), 
and A, and S, defined by (3.2) and (3.3), respectively, 

1 
Fa(q) -- - f (-q7) 

{f2(-q2', + (A1 - 1)qf (-q14, -q35)f (-q211 -q28) 

+ ~2~~ f2(-q14, -q35) + (A3 + l)q3 f (-q7, -q42) f (-q2', -q28) 

-Alq4f (-q7, -q42)f (-d4, -q35) - (A2 + l)q6f 2(-q71 -q42)) 
(mod S3). 

The first appearance of the 11-dissection of Fa(q) in the literature 
also can be found in Garvan's paper [13, Thm. 6.71. However, again, it 
is very likely that Ramanujan knew the 11-dissection, since he offers the 
quotients of theta functions which appear in the 11-dissection on page 70 
of his lost notebook [20]. Further proofs were found by Ekin [8], [9], and 
a reformulation of Garvan's result was given by M. D. Hirschhorn [15]. 
We state the 11-dissection in the two variable form as a congruence. 
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Theorem 4.2. With A, and S, defined by (3.2) and (3.3), respectively, 

- (A4 + 1) q g A C ~ E  - A ~ ~ ~ O B C D E )  (mod S5), 

where A = f (-q55, -q66), B = f (-q77, -q44), C = f (-q88, -q33), D = 
f (-qg9, -q22), and E = f (-qllO, -qll). 

The present authors have recently given two proofs of each of Theo- 
rems 2.1, 2.2, 3.2, 4.1, and 4.2 in [6]. Our first proofs of each theorem 
use a method of "rationalization" which is like the method employed by 
Garvan [13], [14] in proving the dissections where a is replaced with a 
primitive root of unity. Our second method employs a formula found 
on page 59 in Ramanujan's lost notebook [20]. In fact, as we shall see 
in the next section, Ramanujan actually does not record a formula, but 
instead records "each side" without stating an equality. 

5. Entries on Pages 58 and 59 

On page 58 in his lost notebook [20], Ramanujan recorded the follow- 
ing power series: 
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Although Ramanujan did not indicate the meaning of his notation a,, 
in fact, 

a, := an + a-", (5.2) 
and indeed Ramanujan has written out the first 21 coefficients in the 
power series representation of the crank F,(q). (We have corrected a 
misprint in the coefficient of q21.) 

On the following page, beginning with the coefficient of q13, Ramanu- 
jan listed some (but not necessarily all) of the factors of the coefficients 
up to q26. The factors he recorded are 

Ramanujan did not indicate why he recorded only these factors. How- 
ever, it can be noted that in each case he recorded linear factors only 
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when the leading index is 5 5. To the left of each n, 15 5 n 5 26, are 
the unexplained numbers 16 x 16, undecipherable, 27 x 27, -25,49, -7 . 
19,9, -7, -9, -11 15, -11, and -4, respectively. 

6. Congruences for the Coefficients A, on Pages 
179 and 180 

On pages 179 and 180 in his lost notebook [20], Ramanujan offers ten 
tables of indices of coefficients An satisfying certain congruences. On 
page 61 in [20], he offers rougher drafts of nine of the ten tables; Table 
6 is missing on page 61. Unlike the tables on pages 179 and 180, no ex- 
planations are given on page 61. Clearly, Ramanujan calculated factors 
well beyond the factors recorded on pages 58 and 59 of his lost notebook 
given in Section 5.5. To verify Ramanujan's claims, we calculated An up 
to n = 500 with the use of Maple V. Ramanujan evidently thought that 
each table is complete in that there are no further values of n for which 
the prescribed divisibility property holds. However, we are unable to 
prove any of these assertions. 

1 
Table 1. An - 0 (mod a2 + -) 

a2 
Thus, Ramanujan indicates which coefficients A, have a2 as a factor. 

The 47 values of n with a2 as a factor of An are 

Replacing q by q2 in (2.4), we see that Table 1 contains the degree of 
q for those terms with zero coefficients for both 

1 
Table 2. An = 1 (mod a2 + -) 

a2 
To interpret this table properly, we return to the congruence given in 

(2.4). Replacing q by q2, we see that Ramanujan has recorded all the 
degrees of q of the terms (except for the constant term) with coefficients 
equal to 1 in the power series expansion of 

The 27 values of n given by Ramanujan are 
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1 
Table 3. An r -1 (mod a2 + -) 

a2 

This table is to be understood in the same way as the previous table, 
except that now Ramanujan is recording the indices of those terms with 
coefficients equal to -1 in the power series expansion of (6.2). Here 
Ramanujan missed one value, namely, n = 214. The 27 (not 26) values 
of n are then given by 

1 1 
Table 4. An r a - 1 + - (mod a2 + -) 

a a2 
We again return to the congruence given in (2.4). Note that a- 1 + l l a  

occurs as a factor of the second expression on the right side. Thus, 
replacing q by q2, Ramanujan records the indices of all terms of 

with coefficients that are equal to 1. The 22 values of n which give the 
coefficient 1 are equal to 

1 
Table 5. h, = - (a  - 1 + !) (mod a2 + T )  

a 
The interpretation of this table is analogous to the preceding one. 

Now Ramanujan determines those coefficients in the expansion of (6.3) 
which are equal to -1. His table of 23 values of n includes 

1 
Table 6. A, = 0 (mod a + -) 

a 
Ramanujan thus gives here those coefficients which have a1 as a factor. 

There are only three values, namely, when n equals 

These three values can be discerned from the table on page 59 of the 
lost notebook. 
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From the calculation 

where f (-q) is defined by (3.1), we see that in Table 6 Ramanujan 
recorded the degree of q for the terms with zero coefficients in the power 
series expansion of 

For the next three tables, it is clear from the calculation 

that Ramanujan recorded the degree of q for the terms with coefficients 
0, 1, and -1, respectively, in the power series expansion of 

1 
Table 7. An - 0 (mod a - 1 + -) 

a 
The 19 values satisfying the congruence above are, according to Ra- 

manujan, 

1 
Table 8. An = 1 (mod a - 1 + -) 

a 
The 26 values of n found by Ramanujan are 

As in Table 2, Ramanujan ignored the value n = 0. 

1 
Table 9. A, r -1 (mod a - 1 + -) 

a 

The 26 values of n found by Ramanujan are 
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1 
Table 10. An - 0 (mod a + 1 + -) 

a 

Ramanujan has but two values of n such that An satisfies the congru- 
ence above, and they are when n equals 

14,17. 

From the calculation 

it is clear that Ramanujan recorded the degree of q for the terms with 
zero coefficients in the power series expansion of 

The infinite products in (6.2)-(6.6) do not appear to have monotonic 
coefficients for sufficiently large n. However, if these infinite products 
are dissected properly, then we conjecture that the coefficients in the 
dissections are indeed monotonic. Hence, for (6.2)) (6.3)) (6.4)) (6.5), 
and (6.6)) we must study, respectively, the dissections of 

For each of the five products given above, we have determined certain 
dissections. 

We require an addition theorem for theta functions found in Chapter 
16 of Ramanujan's second notebook [19], [5, p. 48, Entry 311. Our 
applications of this lemma lead to the desired dissections. 

Lemma 6.1. If Un = an(n+l)/2pn(n-1)/2 and Vn = an(n-1)/2pn(n+1)/2 
for each integer n, then 

Setting (a, P, N) = (-q6, -qlO, 4) and (-q4, -q12, 2) in (6.7)) we ob- 
tain, respectively, 
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8 56 f (-q4, -q12) = f (q241 q40) - q4f (q , q ), (6.9) 
120 136 whereA:= f(q , q  ), B : =  f(q72,q184), C : =  f(q56,q200), and D:= 

f (q81 q248). 
Setting (a, P, N) = (-q, -q2, 3) in (6.7), we obtain 

For (6.2), the 8-dissection (with, of course, the odd powers missing) 
is given by 

where we have applied (6.8) and (6.9) in the penultimate equality. 
For (6.6), we have the 3-dissection, 

where we have applied (6.10) in the first equality. For (6.3), (6.4), and 
(6.5), we have derived an 8-dissection, a 4-dissection, and a 6-dissection, 
respectively. Furthermore, we make the following conjecture. 

Conjecture 6.2. Each component of each of the dissections for the five 
products given above has monotonic coeficients for powers of q above 
1400. 

We have checked the coefficients for each of the five products up to  n = 
2000. For each product, we give below the values of n after which their 
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dissections appear to  be monotonic and strictly monotonic, respectively. 

Our conjectures on the dissections of (6.4), (6.5), and (6.6) have mo- 
tivated the following stronger conjecture. 

Conjecture 6.3. For any positive integers a and P, each component of 
the (a + ,B + 1)-dissection of the product 

has monotonic coeficients for sufficiently large powers of q. 

We remark that our conjectures for (6.4), (6.5), and (6.6) are then 
the special cases of Conjecture 6.3 when we set (a ,  P) = (1,2), (2,3), 
and (1,1), respectively. 

Setting (a, P, N) = (-g6, -glO, 2) and (-g2, -q14, 2) in (6.7), we ob- 
tain, respectively, 

and 

After reading our conjectures for (6.2) and (6.3), Garvan made the 
following stronger conjecture. 

Conjecture 6.4. Define bn by 
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where we have applied (6.11) and (6.12) in the last equality. Then 

(-l)"b4, > 0, for all n > 0, 

(-l)nb4n+1 > 0, for all n > 0, 

(-l),b4,+2 > 0, for all n > 0, n # 3, 

(-1)"+lb4,+3 > 0, for all n > 0. 

Furthermore, each of these subsequences are eventually monotonic. 

It is clear that the monotonicity of the subsequences in Conjecture 6.4 
implies the monotonicity of the dissections of (6.2) and (6.3) as stated 
in Conjecture 6.2. 

In [I], Andrews and R. Lewis made three conjectures on the inequal- 
ities between the rank counts N(m,  t ,  n) and between the crank counts 
M ( m ,  t ,  n). Two of them, [I, Conj. 2 and Conj. 31 directly imply that 
Tables 10 and 6, respectively, are complete. Recently, using the cir- 
cle method, D. M. Kane [16] proved the former conjecture. It follows 
immediately from [16, Cor. 21 that Table 10 is complete. 

7. Page 182: Part it ions and Factorizations of 
Crank Coefficients 

On page 182 in his lost notebook [20], Ramanujan returns to the 
coefficients A, in the generating function (2.1) of the crank. He factors 
A,, 1 5 n 5 21, as before, but singles out nine particular factors by 
giving them special notation. The criterion that Ramanujan apparently 
uses is that of multiple occurrence, i.e., each of these nine factors appears 
more than once in the 21 factorizations, while other factors not favorably 
designated appear only once. Ramanujan uses these factorizations to 
compute p(n), which, of course, arises from the special case a = 1 in 
(2.1), i.e., 

00 

Ramanujan evidently was searching for some general principles or theo- 
rems on the factorization of A, so that he could not only compute p(n) 
but say something about the divisibility of p(n). No theorems are stated 
by Ramanujan. Is it possible to determine that certain factors appear in 
some precisely described infinite family of values of A,? It would be in- 
teresting to speculate on the motivations which led Ramanujan to make 
these factorizations. 

The factors designated by Ramanujan are 
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At first glance, there does not appear to be any reasoning behind the 
choice of subscripts; note that there is no subscript for the second value. 
However, observe that in each case, the subscript 

n = (as a sum of powers of a) the number of terms with positive 

coefficients minus the number of terms with negative coefficients 

in the representation of p,, when all expressions are expanded out, 

or if p, = p,(a), we see that p,(l) = n. 

The reason p does not have a subscript is that the value of n in this case 
would be 3 - 2 = 1, which has been reserved for the first factor. These 
factors then lead to rapid calculations of values for p(n). For example, 
since Ale = pp2p3p7, then 

In the table below, we provide the content of this page. 

A1 = Pl, 

A2 = P2, 
A3 = P3, 

A4 = P5, 
A5 = P7P, 

A6 = PlP11, 

A7 = P3P5, 

A8 = PlP2P11, 
A9 = P2P3P5, 

A10 = PP2P3P7, 

A11 = ~ 4 ~ 7 ( a 5  - a4 + a2), 
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8. Further Entries on Page 59 
Further down page 59, Ramanujan offers the quotient (with one mis- 

print corrected) 

In more succinct notation, (8.1) can be rewritten as 

where now ao := 2. Scribbled underneath (8.1) are the first few terms 
of (5.1) through q5. Thus, although not claimed by Ramanujan, (8.1) 
is, in fact, equal to F,(q). We state this in the next theorem, with an 
replaced by An. 
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Theorem 8.1. If An is given by (3.2), then, if (ql < min()al, lllal), 

It is easily seen that Ramanujan's Theorem 8.1, which we prove in the 
next section, is equivalent to a theorem discovered independently by R. 
J. Evans [lo, eq. (3.1)], V. G. KaE and D. H. Peterson [17, eq. (5.26)], 
and KaE and M. Wakimoto [18, middle of p. 4381. As remarked in [17], 
the identity, in fact, appears in the classic text of J. Tannery and J. 
Molk [21, Sect. 4861. 

Theorem 8.2. Let 
k k(k+1)/2 

r k  = (-1) q (8.4) 

Then 

A notable feature of the authors' [6] second method, based on Theo- 
rem 8.1 or Theorem 8.2, for establishing Ramanujan's five congruences 
is that elegant identities arise in the proofs. For example, in the proof 
of Theorem 2.1, we need to prove that 

and 
00 

qk + 1 
rk-- 

(4; 4)w 
1 + q4k - (-q4; q4)w f (-q6, -qlO), 

k=-w 

where r k  is defined by (8.4). To prove Theorem 2.2, we need to prove 

and two similar identities. 
On page 59, below the list of factors and above the two foregoing 

series, Ramanujan records two further series, namely, 



m(b !~/b)~(b fbv) 

?(b fb) 

1=u W(b fv/b)"(b fb~) 

00 

uoyqysodmo~ap uoyq~sg pyq~sd 
ayq Ilo1dwa aM '[8~] O'$OW?YQM PUQ PUQ '[LT] UosJaalad pus ?Qx 
'[oT] SUVA3 JO qvyq mog qualagyp sy joold mo '~3 zuaJoayj 40 400.q 

.sp-(oy 'uoypas qxau ayq uy pahold aq 09 'ma~oayq SUIMO-(-(OJ 
ay? qnq 'uvfnuems~ Ilq pamysp sy waloayq ON -1 =: ov aJay amp 

S6 syuvq puv uvCnuvu1v~ 
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which is (8.3), but with the roles of m and n reversed. 0 

Proof of Theorem 2.1. Multiply (8.6) throughout by (1 + a) to deduce 
that 

by an application of (8.5). 
Secondly, 

by Theorem 8.1. Thus, (9.2) and (9.3) yield Theorem 2.1. 0 

10. Conclusion 
From the abundance of material in the lost notebook on factors of 

the coefficients An of the generating function (2.1) for cranks, Fa(q), 
Ramanujan clearly was eager to find some general theorems with the 
likely intention of applying them in the special case of a = 1 to  deter- 
mine arithmetical properties of the partition function p(n). Although 
he was able to derive five beautiful congruences for Fa(q), the kind of 
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arithmetical theorem that he was seeking evidently eluded him. Indeed, 
general theorems on the divisibility of A, by sums of powers of a appear 
extremely difficult, if not impossible, to obtain. Moreover, demonstrat- 
ing that the tables in Section 5.6 are complete seems to be a formidable 
challenge. 

Garvan discovered a 5-dissection of FU(q), where a is any primitive 
10th root of unity, in 114, eq. (2.16)]. This is, to date, the only dissection 
identity for the generating function of cranks that does not appear in 
Ramanujan's lost notebook. It would also be interesting to uncover new 
dissection identities of Fu(q) when a is a primitive root of unity of order 
greater than 11. 
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